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Abstract. We have calculated the electronic structure and the vibrational properties of bulk Li
in the fcc and bcc structures using large super-cells and anab initio, non-local pseudopotential
approach with a plane-wave expansion. The method is based on the density functional theory
with core corrections and local exchange and correlation effects. The calculated phonon
dispersion curves for the bcc structure are compared with the neutron scattering data. The
difference between the Helmholtz free energies for the bcc and the closed-packed structures, in
the harmonic approximation, is found to be small for the temperature range of interest. The zero-
point energies for both structures are substantial, while the heat capacity differential displays a
switch at around 90 K.

1. Introduction

Lithium, the lightest metal with a simple elemental electronic configuration and a broad
range of practical applications, has naturally been the subject of both theoretical and
experimental investigations for a long time. Yet its electronic and structural properties
remain enigmatic to this day. Like other alkali metals it has a bcc room temperature
structure, and at low temperatures it undergoes a structural transformation. For lithium the
low-temperature phases have led to puzzlement and contradictions. Very early on Barrett
and Trautz [1] had suggested that below 70 K the phase was hexagonal close-packed. Later,
on the basis of additional data [2], Overhauser [3] proposed that the low-temperature phase
was characterized by a nine-layer sequence of close-packed planes (ABCBCACAB) called
9R. This structure was subsequently identified in several sets of neutron scattering data [4].
More recently, analysis of diffuse neutron scattering data [5] has led to the opinion that
below 80 K a disordered polytype structure, consisting of the short-range correlated fcc and
hcp phases, coexists with the longer-ranged, ordered 9R structure.

The large deviations in the observed properties of bulk Li from nearly-free-electron
behaviour (for example, the lack of superconductivity at very low temperatures) have led
to several sophisticated theoretical studies of its electronic structure, which have focused
on band-structure effects involving contributions of electron–phonon and electron–electron
interactions [6], and calculations of the total energy [7] and the electron–phonon coupling
constant [8]. The issue of the martensitic transformation [9–11] has also been broached
and, the bulk phonon dispersion curves for the bcc structure have been calculated using
phenomenological methods [12], as well asab initio electronic structure techniques [13–18].
While these efforts have been very useful in identifying various aspects of the electronic and
structural behaviour of lithium, the driving force for the martensitic transformation is not yet
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understood. The analysis of the bulk phonon dispersion even with the most sophisticated of
theoretical techniques has not as yet addressed the issue of this structural phase transition. In
fact, the phonon dispersion curve calculated by Franket al does not produce a reasonable fit
to experimental data for the bcc phase without invoking a global shift of 16% in calculated
frequencies, leading to questions about the applicability of these sophisticated theoretical
methods to explore the structure and the dynamics of bulk Li.

Many years ago it was suggested that in martensitic transitions, in general, vibrational
entropy may play an important role in stabilizing the higher-temperature phase [19–21]. In
the case of lithium, this idea was pursued by Bajpaiet al [11] whose calculations were based
on modified Hartree–Fock equations and the self-consistent pseudopotential method [22] as
applied to lattice dynamics [23]. These authors were able to display that under certain
assumptions their model calculations led to the observed close-packed–bcc transition for
bulk lithium at temperatures reasonably close to the experimental ones. However, as these
calculations were not based on first principles, their reliability and predictive capacity have
remained open to question.

The aim of this paper is to calculate the thermodynamic properties of bulk Li and
to examine the contribution of the vibrational free energy and entropy to the stability
of the proposed structures as a function of temperature. By using as accurate a method
as is currently feasible for the calculations of the structural and dynamical properties
of Li, we also address the issue of the applicability of these theoretical techniques in
distinguishing between structures that remain very close in energy even when dynamic
effects are included. The theoretical technique that we employ for the purpose is anab initio,
non-local pseudopotential method [24] based on the density functional theory [25, 26] with
the local density approximation (DFT/LDA) and using the plane-wave representation [27].
The usage of an iterative diagonalization scheme with a preconditioned steepest-descent
method [28, 29] allows us to consider systems with over a hundred atoms in the super-
cell, which is necessary in order to include interactions extending to several neighbours
for the calculations of the phonon density of states. This method is in essence along
the same lines as that of Franket al [13] save for variations in some technical details,
with the major difference that we calculate the dispersion of the bulk phonons and the
density of states for not just the bcc but also the fcc structure. In addition, we evaluate
the thermodynamic properties of these structures in the temperature range, 0 K–150 K,
during which the martensitic transition is reported to occur. Our calculated structural energy
differences thus include dynamical effects even atT = 0 K (zero-point energy) and allow us
to examine the applicability of DFT/LDA calculations in extracting the relative differences
in the free energies of two structures at finite temperatures. To our knowledge this is the
first calculation of the thermodynamic properties of bcc and fcc Li based on DFT/LDA.

Our choice of the fcc phase as representative of the coexistent close-packed structures
needs a little clarification. Since 9R is the predominant low-temperature phase it would
seem natural to choose it for comparison with the higher-temperature bcc phase. However,
apart from the fact that the fcc structure, with fewer atoms per unit cell, is easier to handle
than the 9R structure vis-à-vis the total energy calculation, we find that it has the lowest
static, total energy at zero temperature. Also, according to Schwarz and Blaschko [5] the
preference of the 9R structure is most likely the result of the relief of a macroscopic shear
which arises with the formation of an fcc nucleus within a bcc crystal. The 9R structure
may thus be viewed as a fcc lattice with a stacking fault after each ABC sequence which
leads to a large reduction of the macroscopic shear in the original fcc lattice. Thus the
choice of fcc as the low-temperature phase is quite reasonable. In the next section we
present some details of the theoretical calculations for the total energy, the force-constant
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matrix and the thermodynamic functions. This is followed in section 3 with results, while
section 4 contains some concluding remarks.

2. Theoretical details

Our calculations of the electronic structure of metallic Li are based on the density functional
theory in the local density approximation [25–27]. We use a plane-wave, pseudopotential
technique to solve the Kohn–Sham equations with the exchange–correlation energy given
by the Vosko–Wilk–Nusair [30, 31] parametrization. The pseudopotential employed is
soft, non-local and of the form supplied by Troullier and Martins [32]. A partial core
correction [33] is also included to account for the contribution of the core to the exchange–
correlation energy. The sampling of the Brillouin zone (BZ) is performed according to the
Monkhorst–Pack [34] scheme and the symmetry of the lattice is used to reduce the number
of specialk-point sets to the irreducible part of the BZ. Next, the iterative diagonalization
scheme with a preconditioned steepest-descent algorithm, in which the step along the
direction of steepest descent is inversely proportional to the kinetic energy of the state [29],
is used. This procedure has been found to lead to convergence very efficiently in studies of
bulk Al and Mg [29]. For sufficiently largek-point samplings, the energy functional that
we minimize gives the electronic contribution to the free energy,Fel , for different values
of the Fermi broadeningkBT , quite accurately [35].

We test the above recipe for the electronic structure calculations by first evaluating some
of the structural properties of bulk Li using standard procedures with one atom/unit cell.
First we check the dependence of the results onk-point sampling, and on the choice of the
energy cut-off employed in the calculation of the number of plane waves. We then proceed
with the calculation of the total energy and force-constant matrix using a large number of
atoms in the super-cell—the number of atoms being dictated by the range of interaction
necessary for the evaluation of the force-constant matrices, needed for the evaluation of the
phonon dispersion.

As has been nicely summarized by Franket al [13] there are several methods for
calculating the phonon dispersion curves: linear response theory and the direct method. We
refer the reader to their work for a comparison of these methods. To calculate the elements
of the force-constant matrix, we have chosen the so-calleddirect approach[36, 13], in
which the force constants are computed from the Hellmann–Feynman forces [37] resulting
from appropriate displacements of atoms in the super-cell. Apart from being intuitively
appealing, an advantage of this method is that the electronic structure calculation has to be
carried out for only a few displacements of atoms in the super-cell. For example, for the case
of cubic crystals just one calculation of the Hellmann–Feynman forces may be sufficient
to recover all force constants, after considerations of the symmetry of the system. The
direct method also has a large range of applicability. For example, in the calculations of the
vibrational spectra of defects in solids, methods like those based on linear response theory
are not suitable. A possible limitation of the method is that an increase in the range of the
interaction leads to a corresponding increase in the size of the super-cell. This is particularly
annoying for systems in which interactions do not die off quickly with distant neighbours.
However, if the super-cell becomes unreasonably large, a slightly different approach can
be applied. By displacing entire planes of atoms the interplanar force constants can be
obtained from significantly smaller sizes of super-cell. Since the interplanar force constants
are linear combinations of interatomic ones, the latter may then be extracted using a finite
set of linear equations [38]. Once the full force-constant matrix is available, calculations
of phonon dispersion curves and the vibrational density of states is straightforward. These
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densities of states can then be used for the computation of thermodynamic quantities.
To illustrate the direct method, suppose that the atom at lattice positionR has a

displacementuα(R), along the Cartesian directionα. A component of the force acting
on this atom, along directionβ, is given by

Fβ(R) = −
∑
αR′

8βα(R,R
′)uα(R′) (1)

where8βα is the force constant in question. Now if only one of the displacements, say
ux(0), is taken to be non-zero, equation (1) simplifies significantly. The displacement of the
centre atom in thex-direction would then cause forcesF (R) to act on the rest of the atoms
in the super-cell. Thexth column of the force-constant matrix can now be determined from

8xβ(0,R) = −Fβ(R)
ux(0)

(2)

whereux(0) is the displacement of the centre atom. Here we have chosenux(0) to be
sufficiently small (1% of the lattice constant), and eliminated cubic and quartic terms
in the expansion of the potential, by performing electronic structure calculations with
displacements−ux(0) and 2ux(0) and manipulating the three expressions so obtained.

It should be pointed out that there is another technical reason for equation (2) to be
only approximately true. As a result of lattice periodicity, the centre atom in the neighbour
cells are also displaced and contribute to the forces acting on the atoms in the cell under
consideration. In order to make this contribution negligible, the size of the super-cell should
be such that the smallest distance from the displaced atom to the cell boundary is larger than
the assumed range of interaction. For example, for a 54-atom, bcc cell, the fourth neighbour
of the centre atom is on the cell boundary and should not be included in the calculation
because it is equally influenced by the displaced atoms in two cells leading to artificial
cancellation of forces. Similarly, although the fifth neighbour is contained in the super-cell
it should be also excluded since its inclusion would be inconsistent with the exclusion of the
fourth neighbour. Thus a bcc super-cell of 54 atoms can consist of coupling just to the third
neighbour. In the case of lithium we found that interactions up to fifth neighbours had to be
incorporated to give reliably converged results for the phonon frequencies. Consequently,
for the bcc structure the number of atoms in the super-cell was taken to be 128. For the
fcc structure the corresponding number is 108 per super-cell, which ensures coupling up to
the fourth neighbour.

Once 8xβ(0,R) is determined, one can find8yβ(0,R) and 8zβ(0,R), using
transformation rules after the crystal is subjected to an operationS from its space group:

8αβ(0,R) =
∑
λµ

SαλSβµ8λµ(0,R). (3)

Note that for cubic crystals it is sufficient to apply rotations ofπ/2 around they- andz-axes
to get the remaining force constants. The Fourier transform of the force-constant matrix
finally yields the dynamical matrix

Dαβ(q) =
∑
R

1

M
8αβ(0,R)e

iq·R (4)

whereM is the ion mass. By diagonalizingDαβ(q) for a set ofqs, we derive the dispersion
ω(q). To evaluate the vibrational density of states from the calculated phonon dispersion
curves, a simple root sampling technique [39] is used. We find that to obtain a smooth
shape for the density of states, a sampling of around 106 points in the irreducible part of the
Brillouin zone is needed. Using these densities of states,N(ω), we compute the vibrational
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contribution to the free energy as a function of temperature, in the harmonic approximation.
The Helmholtz free energy is given by

F(T ) = Fel(T )+ Fvib(T ) (5)

with

Fvib(T ) = kBT
∫ ∞

0
N(ω) ln

[
2 sinh

(
h̄ω

2kT

)]
dω (6)

andFel(T ) is the electronic contribution to the free energy.

Figure 1. The total energy per atom plotted as a function of the volume for four different
structures, bcc, fcc, hcp, and 9R. The curves are obtained by fitting the points through the
Murnaghan equation of state as in reference [47].

3. Results and discussion

The calculated zero-temperature, static, total energies per atom, as functions of the crystal
volume per atom, for Li in the four proposed structures bcc, fcc, hcp and 9R, are presented
in figure 1. There are a number of similar calculations already available in the literature
and the results of almost all of them differ in one way or another. Like Boettger and
Trickey [40], for example, we find fcc to be the most stable phase. However, the energy
difference between the fcc and the bcc structures is only 2.4 meV in our results, compared
to 8.2 meV in their work. The relative order of the phases that we obtain is different from
the one from a similar plane-wave, pseudopotential calculation presented by Dacorogna and
Cohen [7]. However, as pointed out in that work the energy differences are very small,
and within the minimum convergence criterion reasonable for the theory. To ensure that
our calculation is accurate, we have insisted that any further increase of the energy cut-off
radius or the number of the specialk-points leads to changes in total energy that are smaller
than the energy differences between the phases. This has led to a choice ofEcut = 22 Ryd
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and 68, 60, 144, and 110 specialk-points in the irreducible BZ for the bcc, fcc, hcp and 9R
structures, respectively, to yield the results presented in figure 1. Somewhat surprisingly we
find that the hcp structure is highest in energy. It is interesting to note that with ak-point
sampling of 40 specialk-points in the irreducible BZ (the one used by Dacorogna and
Cohen [7]) we also find the structural energy of the hcp structure to be lower than that of
the bcc structure. Finer sampling of the Brillouin zone gives a slightly higher energy of the
hcp phase (0.4 meV above the bcc curve in figure 1). Our conclusion here is that for smaller
values ofEcut (<22 Ryd) the exact ordering of the four structures for bulk Li depends on the
choice ofk-point sampling. In general the energy cut-off and the number ofk-points that
we use are higher than in any other study that we are aware of, allowing us to believe that
our calculation is quite accurate, within the usage ofab initio pseudopotentials and LDA.
It is also worth noting, however, that the small energy differences found for the different
phases are consistent with the fact that all of these phases coexist at low temperatures. In
table 1, we report our calculated values for the lattice constanta0, the bulk modulusB0,
and the pressure derivative of the bulk modulusB ′0 of bulk Li, together with results from
other theoretical calculations and experimental data.

Table 1. Structural properties of bulk Li in comparison with other theoretical calculations and
experimental data. For the hcp structure we findc/a = 1.62. For 9R we assume the ideal
close-packingc/a ratio.

Structure a0 (au) B0 (kbar) B ′0

Boettger and Trickey [40] fcc 8.23 187
bcc 6.60 147

Dacorogna and Cohen [7] hcp 5.71 137 3.3
fcc 8.09 138 3.4
bcc 6.43 130 2.6

Present calculation hcp 5.83 133 3.3
fcc 8.20 134 2.8
bcc 6.51 135 3.5
9R 5.80 133 3.4

Experiment [46] bcc 6.60 116
Experiment [1] hcp 5.88 126.5

The calculated phonon dispersion curves for the bcc and the fcc phases are presented in
figures 2 and 3, respectively. The super-cells used for the dynamical calculations consisted
of 128 atoms for the bcc structure and 108 atoms for the fcc structure. This corresponds to
coupling to the fifth neighbour in the bcc, and to the fourth neighbour in the fcc structure.
With this large a super-cell, the energy cut-off of 22 Ryd makes the calculation prohibitively
large. We, therefore, had to restrict ourselves to a smaller energy cut-off in order to make
the calculations tractable. From an analysis of the sensitivity of the calculated phonon
frequencies to the choice of the cut-off energy, we foundEcut = 12 Ryd to yield reasonable
results. To test the reliability of the phonon frequencies arising from the smaller energy cut-
off, we compared the values at specific points of the Brillouin zone using the frozen-phonon
method and energy cut-offs of 12 Ryd and 22 Ryd. The results are presented in table 2.
Since the frozen-phonon calculation does not limit the interactions to a finite number of
neighbours, the values in the table indicate that the choice of the size of our super-cells is
reasonable. In the present calculation, eightk-points in the BZ, equivalent to one special
k-point in the irreducible BZ, were sampled. The adequacy of thek-point sampling was
checked for the 54 atom super-cell in which we found that the force constants, calculated
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with four specialk-points in the irreducible BZ, were the same within 3% as the ones
calculated with one specialk-point. A related issue is the value of the lattice constant for
the two choices ofEcut . To ensure the consistency of our method we calculateda0 once
more with a cubic unit cell with two atoms,Ecut = 12 Ryd, and thek-point sampling
equivalent to that used for the case of the 128-atom cell. The value of the lattice constant
was only 0.1% different from the one already calculated. To be able to calculate stable
Hellmann–Feynman forces we allow for partial occupation of the electronic states which
were taken to follow the Fermi distribution with a temperature broadeningkBT = 0.01 au.
For the earlier calculations of the total energy, this parameter was taken to be 0.001 au. The
higher value ofkBT in the force calculation gives better convergence and does not affect
the values of the calculated density functional forces [35].

Table 2. Phonon frequencies at specific points in the Brillouin zone from different calculations.

Type of calculation Ecut (Ryd) Mode f (THz)

bcc, N point

From atomic force constants 12 L 9.95
T1 2.43
T2 6.32

Frozen phonon 12 L 9.72
T1 2.20
T2 6.10

Frozen phonon 22 L 9.68
T1 2.20
T2 6.16

Experimental results [41] L 9.0
T1 1.9
T2 5.7

fcc, X point

From atomic force constants 12 L 10.48
T 7.41

Frozen phonon 22 L 10.24
T 7.12

Frozen phonon 12 L 10.14
T 6.95

The calculated dispersion curves for the bcc phase are compared to the experimental
values measured at 98 K [41], in figure 2(a). The calculation reproduces the shape of the
dispersion curves very well but the calculated values differ from the experimental ones by
a factor of about 1.10 at the zone boundaries. This result is similar to that of Franket
al [13] who needed a scaling factor of 1.16 to get an agreement with the experimental data.
Perhaps a reason for this discrepancy is the error that the LDA introduces in estimating
lattice constants. We calculate a value of 6.51 au for the lattice constant, which is larger
than 6.34 au given by Franket al, but is still about 1% smaller than the experimental
value of 6.60 au [46]. In figure 2(b), we replot the dispersion curves for the bcc structure
with a rescaling of the calculated curves by a factor of 0.9, in a manner similar to that of
Frank et al [13]. The fit to the experimental data is now deceptively good in most parts
of the Brillouin zone. The low-frequency mode (T1) along the [110] direction, however,
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Figure 2. Phonon dispersion curves for bcc Li along high-symmetry directions. Symbols
represent experimental data from reference [41] and the solid line is from the present calculations:
(a) unscaled values; (b) calculated frequencies scaled by a factor of 0.9. Hereξ is the reduced
wave vector.
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Figure 3. Calculated phonon dispersion curves for fcc Li in the high-symmetry directions.

is still noticeably stiffer than that in the experimental data. Meanwhile, the shapes of the
dispersion curves in figure 3, for the fcc structure of bulk Li, compare well to a Hartree–
Fock calculation [11] and resemble the dispersion curves of other fcc metals [41]. At the
moment there are no low-temperature (below 80 K) phonon data available to compare with
the dispersion curves in figure 3.

It may be argued that a smaller value for the lattice constant results in stiffer force
constants, and overall higher phonon frequencies. This would imply that the discrepancy
between the theoretical calculations and the experimental data in figure 2(a) is mainly due
to the difference in the lattice constants. To check the validity of such a rationale, we
carried out a set of calculations in which the lattice constant for the bcc structure was taken
to be the same as in the experimental data. The resulting phonon dispersion curve along
[110] is shown in figure 4. Contrary to one’s expectations the frequencies of the modes
do not change significantly. This means that the interactions between the ions cannot be
softened simply by increasing the distance between them. It also implies that the LDA error
in obtaining the lattice constant is not the main reason for the deviation of the calculated
phonon frequencies from those in the experiment. Another interesting feature in figure 4 is
that the frequency of the shear T1 phonon mode increases on increasing the lattice constant
by a small amount. This suggests that the Grüneisen parameter is negative and there may
be softening of this mode and a possible structural phase transition at higher pressure [39].
We are not in a position to document this aspect any further.

The calculated vibrational DOS for fcc and bcc lithium are presented in figure 5. They
are obtained through sampling of about 106 points in the irreducible part of the BZ, which
is computationally quite feasible. Using the computed DOS, the Helmholtz free energies
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Figure 4. Phonon dispersion along [110] calculated for two different values of the lattice
constant:a0 = 6.51 au (present calculation) anda0 = 6.60 au (experimental data). Symbols
represent experimental data from reference [41].

and the lattice heat capacities for the two structures are calculated. The difference in the
lattice specific heats of the fcc and bcc phases is shown in figure 6. An interesting feature
in figure 6 is the switch in the heat capacity differential at around 90 K. At temperatures
below 90 K, the lattice heat capacity of the bcc structure is higher and above that temperature
it is lower. This hint of a possible preference for one of the structures is, however, not
borne out by the calculated vibrational free energies, obtained using equation (6), with the
electronic contributionFel added and plotted in figure 7. We findFel to be significantly
smaller thanFvib. As can be seen in figure 7, the curves do not intersect and do not exhibit
any phase transition at least up to temperatures of several hundred degrees. Of course, the
difference between the free energies is so small that even if the curves crossed it would
have been difficult to arrive at an unambiguous result for the role of the vibrational entropy
in the phase transition. A useful aside here comes from the zero-point motion which can be
calculated easily from the vibrational density of states. We find the zero-point energy for
the bcc structure to be 46.9 meV and for the fcc phase it is 44.5 meV. The magnitude of
the zero-point motion is greater than the differences between the static energies or the free
energies. This suggests that for a light metal like Li it is essential to take the zero-point
motion into account in any discussion of the energetics.

4. Concluding remarks

Our aim in this paper was to examine the free energy of bulk Li in the bcc and the
closed-packed structure (here chosen to be fcc) as a function of temperature, using accurate
calculations of the total energy and the phonon density of states. The free energies were
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Figure 5. Vibrational densities of states for lithium in the bcc and fcc structures.

Figure 6. The lattice heat capacity difference between the bcc and fcc structures.

calculated in the harmonic approximation which seems reasonable since we were interested
in examining the relative stability of two structures in which the material is known to exist.
We were not interested, in this work, in exploring the path/process by which the martensitic
transition actually took place, for which anharmonic effects would have been critical. Thus
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it would have been satisfying to find that at low temperatures the fcc structure had lower
free energy and at higher temperatures the bcc structure was favoured. While we do find
the low-temperature result to be appealing, we do not see a crossover of the free-energy
curves at around 80 K or so, as suggested from experimental data.

Figure 7. The Helmholtz free energy,F = Fvib + Fel , plotted as a function of temperature.

There are several factors to be considered here. Firstly, we are dealing with energy
differences that are of the order of a few meV, which is about the limit of accuracy of
the LDA. In this sense even if the two free-energy curves in figure 7 had crossed and
the energy differences had remained small, the results would not have been any more
conclusive. Secondly, the calculated phonon dispersion curves show an error of about
10% when compared with the experimental values of the modes at the zone boundaries.
The experimental values are softer than the calculated ones, in all instances. To test our
calculations of the phonon dispersion curves, we have performed similar calculations for
bulk phonons in Al, and find an excellent agreement between the measured and calculated
phonon dispersion curves along the reported directions in the Brillouin zone. There is, of
course, the possibility that an ever-larger value ofEcut (>22 Ryd) may produce a better
fit to the experimental data for the bcc phonons. At the moment such calculations are
beyond our computational powers. There is also the question of the applicability of the
pseudopotential approach to lithium which has a large core radius. It will be interesting to
compare our results for the phonon dispersion curves to that of an all-electron calculation,
but so far such calculations are not available. Thirdly, there is the issue of the accuracy of
phonon dispersion curves calculated using the direct method such as here and in reference
[13]. As shown in figure 2(b), a rescaling of the phonon frequencies by a factor of 0.9
gives better agreement with the experimental data. What is puzzling is that the Helmholtz
free energies calculated with this scaling factor for the phonon frequencies, for both the bcc
and fcc structures, do not yield a more conclusive result.
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Finally, there is the issue of anharmonic effects. Anharmonic vibrational amplitudes are
necessary to bring about any phonon-driven phase transition [42–45, 10]. In an appealing
study, Ye et al [44] have examined the paths by which Na and Ba undergo martensitic
phase transitions. The case of Na is very much akin to that of Li here. The approach taken
by these authors is complementary to that in this paper, as it evaluates the possible energy
barriers, reaction paths and anharmonic contributions to the vibrational amplitudes. It should
be worth pursuing a similar study for Li, which will give more insight into the magnitude
of the anharmonic vibrational amplitudes. A fully dynamical study of the martensitic phase
transition thus will still have to await further theoretical developments, which will make
first-principles molecular dynamics simulations feasible for metallic systems. In the absence
of such a study, our conclusion is that the subtle and small energy differences, the long-
ranged nature of the ionic interactions, and the presence of a large core radius challenge the
applicability of DFT/LDA calculations usingab initio pseudopotentials in explaining the
dynamics of bulk Li. It is possible that corrections such as the GGA [48] may rectify the
problem. We hope that such calculations will be forthcoming.
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